Download Free PDF View PDF
Download Free PDF View PDF
Download Free PDF View PDF
Download Free PDF View PDF
Download Free PDF View PDF
Download Free PDF View PDF
The present work deals with two challenging problems of applied geostatistics: (i) Station- arity assumptions often do not hold under real-world conditions. (ii) Geostatistical methods have to be linked with spatial databases in order to be applicable in non-stationary situations. Solutions for both problems are proposed and implemented. (i) A central assumption in geostatistics is the stationarity of the process.
Download Free PDF View PDF
Download Free PDF View PDF
The use of geostatistics requires at least that the intrinsic hypothesis be satisfied. The presence of a trend in the data invalidates this hypothesis. One of the ways of solving this problem is by subtracting a function fitted to the original data and working with the residuals. This technique also represents a change to a smaller scale of the variability and surface roughness. This paper describes the detrending technique of subtracting a trend surface fitted by the least squares method and discusses the results using topographical data as examples. The objective is to show how the detrending technique works for different scales and degrees of trend and how to interpret the results. It is shown that the simplest the surfaces fitted that does the work of removing the trend the best are the results obtained. The use of jack knifing is proved useful to validate the resulting semivariograms. For most of the applications and depending upon the scale, a linear or a parabolic surface wor.
Download Free PDF View PDF